Introduction
Data visualization turns numbers into charts, graphs, and visuals.
Python has powerful libraries like matplotlib,
seaborn, and plotly for this job.
In this tutorial, you’ll learn the essentials of plotting data in Python.
1. Installing Libraries
pip install matplotlib seaborn
2. Basic Line Plot
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [10, 20, 25, 22, 30]
plt.plot(x, y)
plt.title("Line Chart")
plt.xlabel("X values")
plt.ylabel("Y values")
plt.show()
3. Bar Chart
plt.bar(["A", "B", "C"], [5, 12, 9])
plt.title("Bar Chart Example")
plt.show()
4. Scatter Plot
plt.scatter([1, 2, 3], [2, 5, 1])
plt.title("Scatter Plot")
plt.show()
5. Histogram
data = [1,2,2,3,3,3,4,4,5,5,5,5]
plt.hist(data)
plt.title("Histogram")
plt.show()
6. Seaborn Styling
import seaborn as sns
sns.set(style="darkgrid")
sns.lineplot(x=[1,2,3], y=[5,10,7])
plt.show()
7. Multiple Plots in One Figure
plt.subplot(2, 1, 1)
plt.plot([1,2,3], [2,4,1])
plt.subplot(2, 1, 2)
plt.plot([1,2,3], [3,2,5])
plt.show()
8. Pie Chart
sizes = [40, 30, 20, 10]
labels = ["A", "B", "C", "D"]
plt.pie(sizes, labels=labels, autopct="%1.1f%%")
plt.title("Pie Chart Example")
plt.show()
9. Saving Charts to File
plt.savefig("chart.png")
10. pandas + Plotting
import pandas as pd
df = pd.DataFrame({
"year": [2020, 2021, 2022],
"sales": [100, 150, 200]
})
df.plot(x="year", y="sales", kind="line")
plt.show()
Summary
- Use matplotlib for core plotting
- Use seaborn for better style and statistical graphs
- Use pandas to quickly plot dataframes
- Visualizing data helps understand trends and patterns
- Charts can be saved to images for reports